

人工智能视觉实训平台指导书

MM 0

武汉唯众智创科技有限公司

二〇二〇年

(一)图像基本操作类	3
1.1 滑块控制三原色	3
(二) 图像检测类	8
2.1 轮廓边界检测	8
2.2 表面划痕检测实验	13
2.3 行人检测实验	19
2.4 车牌目标识别实验	24
2.5 人脸检测实验	29
(三) 图像变换类	34
3.1 图像黑白变换实验	34
3.2 图像灰度变换实验	
3.3 图像取反变换实验	44
3.4 图像锐化变换实验	49
3.5 图像加噪变换实验	53
3.6 图像模糊变换实验	57
(四) 图像修复类	61
4.1 图像污点修复实验	61
(五) 图像识别类	65
5.1 红绿灯识别实验	65
5.2 字符识别实验	71
5.3 猫狗分类实验	75
5.4 车牌识别实验	80
5.5 人脸识别实验	86
5.6 目标检测实验	92
5.7 手势识别实验	
(六) 图像跟踪类	104
6.1 目标跟踪器实验	104
6.2 图像米集监控实验	109
6.3 智能监控云台实验	
(七) 双目奕	
7.1 双目标定实验	
7.2 双目校止实验	
7.3 双日测距头验	
7.4 双日米集实验	
(八) 二堆图像突	146
8.1 二维亚怀罕间重建买验	146

目 录

(一) 图像基本操作类

1.1 滑块控制三原色

一、问题

在人工智能计算机视觉领域经常会遇到需要处理图片的场景,对于计 算机而言一张图片的内容其实就是由不同的像素点组成。要想了解像素 点,我们必须首先了解光的三原色,那么大家知道光的三原色是什么吗? 它们之间进行组合能有多少种变化呢?

二、方案

光学三原色(RGB):红、绿、蓝(靛蓝)。光学三原色混合后,组成显示屏显示颜色,三原色同时相加为白色,白色属于无色系(黑白灰)中的一种。

通过 Python 和 OpenCV 可以进行画图, 我们可以先在白色的底板上 画一个矩形, 然后做三条滑轨, 通过滑轨来控制这个矩形的颜色。滑轨可 以使用 OpenCV 中的 createTrackbar 方法实现, 同时可以通过 getTrackbarPos 方法获取滑轨的值, 通过获取到的数值来调整三原色中 各个颜色的比例。

三、环境

硬件环境:有稳定网络的机房、唯众人工智能计算机视觉实训平台硬件。

软件环境:唯众人工智能计算机视觉实训平台软件环境。

3

四、实验步骤

1、连接电源,打开唯众人工智能视觉实训平台,打开方式为按下主板 电源键,默认开机自动登录(若需要开机密码则选择用户 AI-Platform, 密码默认为 123456),开机界面如下图 4-1。

唯众人工智能视觉实训平台默认系统为 Linux 系统 (Fedora),为了 满足在计算机视觉识别开发过程中的各种需求,本镜像系统中已经预装了 Python3、OpenCV3、Numpy、TensorFlow、Keras 等多个依赖,并且 已配置好相关环境,学生和老师无需重复去进行开发环境搭建。

2、创建自己的项目文件夹

首先点击界面左下角的"微型黑屏标签",进入到"LX终端"。本实 验为滑块控制三原色实验,根据要求,在 AI-Platform 的文件夹下创建一 个文件夹"test"进入到"test"文件在创建一个"test1-1"文件夹,在

"test1-1"文件夹中创建一个"rgb_color.py"的文件,在该文件中进行 代码编程。

3、按照方案描述编写相关代码,使用 python3 运行编写的代码,并 且进行 debug, 排查错误,得到预期效果。

知识点:

创建文件夹的方法为:mkdir xxx;创建一个"test"文件夹的方法为:mkdir test。

进入到某个目录的方法为: cd xxx; 如进入到 test 文件夹的方法为: cd test。

创建.py 文件可以使用 vi 编辑器,方法为: vi xxx.py,编写完毕后按 "ESC"键退出编辑,按"Shift+:"输入 wq,保存修改的文件。

通过命令 pwd 可以查看当前的路径,通过命令 ls 可以查看当前路径 下的目录。

createTrackbar 方法: 创建滑轨。

getTrackbarPos 方法:获取滑轨对应的参数值。

5

五、实验代码

```
import numpy as np
def nothing(x): # 滑动条的回调函数
# 创建回调函数
def onmouse(event, x, y, flags, param): # 鼠标事件的回调函数
   r = cv2.getTrackbarPos('R', WindowName) # 获取滑动条 R 值
   g = cv2.getTrackbarPos('G', WindowName) # 获取滑动条 G 值
   b = cv2.getTrackbarPos('B', WindowName) # 获取滑动条 B 值
   color = (b, g, r)
   cv2.rectangle(image, (0, 0), (600, 400), color, -1)
WindowName = 'R G B color' # 窗口名
cv2.namedWindow(WindowName, cv2.WINDOW_AUTOSIZE) # 建立空窗口
cv2.createTrackbar('R', WindowName, 0, 255, nothing) # 绘图颜色 R
```


六、实验结论

通过 Python3 的开发环境和 OpenCV 中的相关函数可以做到对一张 图片的图片进行绘图,我们可以调节我们绘图的形状和颜色,通过滑块控 制图片的三原色的比例参数就可以得到不同颜色组合的图案。实验结果如 下图所示: